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I. INTRODUCTION

In a previous publication [8] we have studied the limit behaviour of
sequences of powers of Bernstein operators. It seems natural to ask for which
of the other approximation operators one can establish similar convergence
theorems and Voronovskaja type theorems. In this note we deal with the
Kantorovic operators Pn (n E lN o) defined by

n (n) k+I/n+1
Pn(J;x) = (n + I) 2.: k x k(1 ~xY-kf f(t)dt

k=O k/n+l
(x E [0, I])

(I)

for functions f E ~ [0, I ] (Kantorovic [2]; Lorentz [4, p. 30]).
The Kantorovic operators P n are closely related to the Bernstein operators

B n ; more exactly,

d
Pn(J; x) = dx B n+l(F; x)

for each n E lN o ' with F(x) = f~f(t) dt (cf. [4, p.30]). By induction, this
relation can be extended to integral powers. One gets

(2)

for all n E lN o' k E IN. This relation makes it possible to establish for each
theorem in [8] the parallel theorem for the Kantorovic operators.

In the following, let (kn)nEI'J always be a sequence of natural numbers. In
Section 2 we shall determine limn -co P~"f for functions f E 2i [0, I), provided
Iimn_oo(kn/n) exists. This section is essentially based on our earlier work [8].
As a secondary result, we shall obtain that the limits of the eigenfunctions of
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the Kantorovic operators are the Legendre polynomials on the interval
[0, 1]. In Section 3 we shall state theorems of Voronovskaja type for the
marginal cases lim"->co(k,,ln) =°and lim"->co(k,,ln) = 00.

We shall use the following abbreviations: For each s E lNo"~ is the space
of all real polynomials with maximal degree s, and es is the monomial with
es(x) = X

S (x E [0, 1D. For each function IE .If; [0, 1], F will denote the
integral function with F(x) = gf(t) dt. For all unexplained notation we refer
to [8].

2. CONVERGENCE THEOREMS

We begin at the asymptotic behaviour of (p~np)"EIN for polynomials P, and
assume P is a given polynomial of degree s (s E IN). In the sequel, we shall
only consider indices n with n ;;:, s.

For each n, the polynomial space ~ is an invariant subspace of P". ~ is
spanned by the eigenfunctions p}+ 1,,,+ I of P", which are polynomials of
degree j and the derivatives of the eigenfunctions Pj + I,,, + I of the Bernstein
operator B" + 1 (j = 0, 1, 2,... , s); the eigenvalues of P" are 1 and
(1 - I/(n + 1»(1- 2/(n + 1» ... (1 - j/(n + 1» (j = 1,2,..., s). Hence there

holds P"pL"+1 =P;,,,+I and P"P;+I,"+I = (I-I/(n + 1»(1 - 2/(n + 1» ,..
(1-jl(n+l»p}+i,"+1 (j=1,2, ...,s). These facts ensue from the
corresponding facts for the Bernstein operators and on (1). For further
details we refer to [8]. Kelisky and Rivlin [3] have shown that the
polynomials Pi+ 1,,,+ I are coefficientwise convergent (as n -+ (0), and they
calculated the limit polynomials Pi +I' As in [8], in the following we will use
the denotation lim,,-> co PH 1,,,+ 1 ~PH I for coeJficientwise convergence.

Multiplying with the factor (2j + 1) - 1/2 e} ~ D, we get the polynomials
gi,,,=(2j+1)-1/2ej~Dp;+I,"+1 and gi=(2j+1)-1!2ej~Dp;+I' Then
there holds lim,,->co gj,,, ~ gj (j = 0, 1, 2,..., s), and gj is the Legendre
polynomial of degreej on the interval [0,1] as we have shown in [8]. For
j = 0, from PI,,, = PI = e1 [8, Lemma 1], follows go,,, = go:=: eo, and for j:=: I,
g,is the polynomial with g,(x) = V3(2x - 1). For powers P~ we obtain

pkg -g
" 0,,, - 0,,,

and

(
l)k ( 2) kp k , - 1 - -- 1---

"g)." - n + 1 n + 1

(j = 1,2,... , s).

( j) k1--- ,
n + 1. g},11

(3)
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For each n >s, the given polynomial p can be represented in the form

(4)

with unique coefficients aj,n; similarly, there exists a unique representation

s

p= L ajgj,
j=O

(5)

where aj are the coefficients of the Legendre expansion of p. In particular,
there holds ao=np(t)dt and a 1 =V3nt(l-t)p'(t)dt. Since
Pj+l,n+l(O)=Pj+l,n+l(I)=O (for j=I,2,... ,s) and Pl,n(X)=x (cf.
[8, Lemma 1]), integrating (4) we also find aO,n = np(t) dt. For the other
coefficients aj,n' it is readily proved by induction (cf. [8, Lemma 1]) that
limn-.CX) aj,n = aj for each j E {I, 2,... , s}. Combining all these facts and using
Lemma 2 from [8], we obtain the following proposition.

PROPOSITION 1. Let p be the given polynomial and (kn)ne N a sequence of
natural numbers,

(i) In the case limn-.CX)(knln) = 0 there holds

(6)

As to the degree of approximation there holds

(7)

For the limit function in (7) there holds

This follows from -Ci 1) gj(X) = (!x( 1 - x) g; (x))' for j = 1, 2,..., s, which is
proved as (5') in [8].

(ii) In the case limn-.CX)(knln) = 00 there holds

(8)
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with aogo(x) = np(t) dt. As to the degree of approximation there holds

1 -k
n l I l c

lim (1 - --) P~"p - f p(t) dteo = a l gl'
n~CO n + 1 0

with
1

a1g1(x)=(x-!) f
o

6t(l-t)p'(t)dt.

(iii) In the case limn~co(kn/n)= q with q E (0, (0) there holds

lim p~np~aogo +E~algl +Eiazgz + ... +Eiasgs'
n~CO
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(9)

(10)

where E j = e-j(j+ I)/z. In this case a simple result concerning the degree of

approximation seems to be impossible.

It will be our next aim to extend the limit relations (6), (8), and (10) to
wider classes of functions. Relations (7) and (9) concerning the degree of
approximation will be extended in Section 3.

For Theorem 1, we have chosen a ~-version, which seems to be the most
natural. Obviously similar uniform or Y;-versions for the existence of the
limits are readily available. But for the representation of the limit operators
cr. the remarks in [8] after Theorem 1.

In the following theorem all occurring limit relations are to be understood
with respect to the ~-norm. C .) denotes the inner product in the Hilbert
space ~[O, 1]. We again use the abbreviation Ej = e-j(j+ 1)/2. For q = 00, we

set Ej = 1 if j = 0 and EJ = 0 otherwise.

THEOREM 1. (i) For each q E [0, 00 ],

co
[qf= L: EJ<f, gj) gj

j=O
(IE ~[O, 1])

is a linear bounded operator from ~ [0, 1] into itself with operator norm
Il[qllz = 1. In particular, [0 is the identity in ~[O, 1], and [00 is the
operator with

1

[00(1; x) = f
o
f(t) dt.

(ii) If (kn)nEN is a sequence of natural numbers with
limn~co(kn/n) = q, then there holds limn~co P~i= [qffor eachfE ~[O, I].

(iii) {[q I0 ~ q < oo} is a strongly continuous semigroup of linear
bounded operators on ~[O, 1].
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Proof It is known (cf. [4, p. 32)) that IIPnll z = 1 for all n E lN o. Hence
(i) and (ii) follow from Proposition 1 and the theorem of Banach and
Steinhaus. The details of the proof, which is straightforward, are left to the
reader. I

3. VORONOVSKAJA TYPE THEOREMS FOR THE CASES

lim (kn/n) = 0 AND lim (kn/n) = CX)
n-oo n-oo

We first consider the case limn-->oo(kn/n) = O. In this case the approx­
imation property limn-->oo P~1=f uniformly on [0,1] for each fE 'G'[O, 1]
also ensues from the theorem of Bohman and Korovkin. To estimate the
quality of this approximation, we need the defects of approximation with the
functions of the test set {eo' el , ezl, namely,

Employing Theorem 6.1 from [7], we obtain

(12)

for each fE 'G'(I)[O, 1] with f' E LiPM 1. Equation (12) will be used for the
proof of the following theorem.
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THEOREM 2. SupposefE,&,,(2)[0, IJ andlimn~oo(kn/n)=O. Then
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. n
!~~ k{p~n(f;X)-f(x)}

n

1 '
= (l-X(1 - x)f'(x) ) uniformly on [0, 1J.

Proof Without loss of generality we may restrict ourselves on the
subspace ,&,,~2)[0, IJ = {fE,&,,(2)[0, IJ If(O)=O=f(1)}, which is a normed
linear space equipped with the norm q(f) = Ilf"lloo' For n E lN o we
introduce operators Tn: ,&,,~2)[0, 1] ---. '&"[0, 1J defining To(f; x) =
!x(1- x)f"(x) and (for n E IN) Tn(f; x) = (n/kn){p~n(f; x) - f(x)} - (n/kn)
{(I-I/(n+lWn-l}(x-!)('(x) (xE[O,I]). Regarding Tn as linear
operators from ,&,,~2)[0, IJ with the norm q into '&"[0, IJ with the supremum
norm, we can estimate the associated operator norms. Since the right side of
(12) is coefficientwise convergent to (M/2)(x - x 2

) as n ---. 00, there exists a
constant c> ° such that ITn(f; x)1 ~ c for all n E IN, x E [0, 1J provided
q(f) ~ 1. Similarly, for To there holds ITo(f; x)1 ~ ~ for all x E [0, 11,
provided q(f) ~ 1. Thus the norms of all operators Tn are uniformly
bounded. For the polynomials in ,&,,~2)[0, 1J, there holds limn-->oo Tn(f; x) =
(!x(1 - x)f'(x))' + (x - Df'(x) = To(f; x) uniformly on [0, 1], on account
of (7) and [8, Lemma 2 J. Since the polynomials form a dense subspace in
,&,,~2) [0, 1] we infer that limn-->oo Tn(f; x) = To(f; x) uniformly on [0, 1J for all
fE,&,,~2)[0, 1], which is equivalent with limn~oo(n/kn){p~n(f;x)-f(x)}=

(!x(l-x)f'(x))' uniformly on [0,1] for allfE ,&,,~2)[0, IJ. I

In the second case limn~oo(kn/n)= 00, we cannot use the estimates from
[7, Sects. 6, 7J, which are valid only for limit operators admitting a
Korovkin type theorem with finite test set ~. So the main difficulty in the
proof of the following theorem consists in finding an uniform bound for the
norms of Tn'

THEOREM 3. SupposefE ,&,,0) [0, 1J and limn~co(kn/n) = 00. Then

( 1) -k
n

) I!lim 1 - -- p~n(f; x) - Jf(t) dt
n-->oo n + 1 0

= (x - -} ) f 6t(1 - t)f'(t) dt

uniformly on [0, 1J.
Proof Without loss of generality, we may restrict ourselves on the

subspace ,&,,~1)[0, 1] = {fE ,&,,0)[0,1] 1 fbf(t) dt = Of, which is a normed
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linear space equipped with the norm q(f) = 11/'1100' Each Pn is a linear
operator from ~~I) [0, I] with norm q into itself, on account of (1). We again
try to estimate the associated operator norm, which will be denoted by q(Pn ),

too. Suppose q(f) ~ 1. Then

I
n-l 1

IPn(f;x)'I= n(n+l) L (n- )xk(l_xY- 1
-

k
k=O k

n-l 1
~n(n+l)L (n- )xk(I-X)n-l-k(n+1)-2

k=O k

1
&1---
"" n + 1

for each xE [0, I], n E IN, which implies q(Pnf)~ 1-I/(n + 1). Since
Pn(e 1 - !eo) = (1- I/(n + 1))(e1 - !eo), we obtain q(Pn) = 1 - I/(n + 1).
Then for the operators Tn defined by Tn = (1 - I/(n + 1))-knp~n there holds
q(Tn) = 1 (n E IN). Similarly for the operator To: ~~1)[0, 1]--t ~~1)[0, I] with
To(/; x) = (x -!)n6t(1 - t)f'(t) dt there holds q(To) = 1. Thus the norms
of all operators Tn (n E lN o) are uniformly bounded by 1. The polynomials in
~~1)[0, I] form a dense subspace, due to the Weierstrass theorem, and for
each polynomial in ~~1)[0, I], (9) entails limn~oo Tnl= To/with respect to
the norm q. Hence we have limn~oo Tnl= Tol for all IE ~~1)[0, I] with
respect to the norm q. Also with respect to the supremum norm,
limn~oo Tnf= Tof holds true. This follows from the representation f(x) =
gf'(t) dt - nfU'(w) dw dt, which enables the estimate I/(x)1 ~
(3/2) q(f). I

Since n6t(1 - t) dt = 1, the integral g 6t(1 - t)f'(t) dt is a weighted
mean of the derivative f'. Observe that the limit in Theorem 3 also can be
written in the form 6(x-D(nf(t)dt-2nfU(w)dwdt), wheref' appears
no more. This leads us to the conjecture that it willbe possible to weaken the
smoothness condition IE ~(I) [0, I] in Theorem 3.

In the last years, the approximation by Kantorovic operators was
investigated by several authors [1,5,6,9]. All authors consider the approx­
imation with respect to some ~-norm. For the Kantorovic operators, ~­
approximation seems to be a more suitable setting than uniform approx­
imation. So we suggest as a problem to search for ~-versions of our
Theorems 2 and 3 with weaker smoothness conditions for the function f

To conclude this paper, we make a remark concerning saturation. For a
function IE ~(2)[0, I] in the case limn~oo(knln) = 0, limn~oo(n/kn)

{p~n(f; x) -I(x)} = 0 entails that I is constant and p~nI =I for all n E IN. In
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contrast to this suppose fE ~(I) [0, 1] and limn-.oo(kn/n) = 00. Then
limn-. oo(1- l/(n + l»-kn {p~n(f; x) - nf(t) dt} =°entails only nt(1 - t)
f'(t) dt = 0, and the example of the function f(x) = x 2

- X + i shows that
P~i= (1 - l/(n + 1»kn (1 - 2/(n + 1»kn f *- nf(t) dt = 0 for infinitely
many n is still possible.
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